Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 507
Filtrar
1.
Acta Stomatol Croat ; 58(1): 2-17, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38562220

RESUMO

Objective: This study aimed to evaluate the biological effects of "proanthocyanidin" (PA), and "nisin" (Ni), on dental pulp stem cells (DPSCs) and LPS-induced DPSCs as well as their antimicrobial effects against S. aureus and E. coli. Materials and methods: After characterization of DPSCs, cytotoxicity of PA and Ni on DPSCs were evaluated using a water-soluble tetrazolium salt (WST-1). The cytokines and chemokines released by DPSCs and the expression levels of IL-6, IL-8, and TNF alpha were detected with human Cytokine Array C5 and enzyme-linked immunosorbent assay (ELISA), respectively. The antibacterial activities of PA and Ni were tested using the drop plate method. Results: PA at 75 µg/ml increased cell viability, decreased TNF-α expression of DPSCs, did not show any cytotoxic effects on LPS-induced DPSCs, and also showed a tendency to decrease TNF-α expression. PA at 75 µg/ml exhibited higher expressions of TIMP-2, OPG, IL-7, and IL-8 in LPS-induced DPSCs compared to DPSCs. Ni at 100 µg/ml decreased TNF-α expression in DPSCs with no cytotoxic effects. It provided increased cell viability and a downregulation trend of TNF-α expression in LPS-induced DPSCs. Both Ni and PA provided strong antibacterial effects against S. aureus. Ni at 200µg/ml had strong antibacterial effects against E. coli without affecting negatively the viability of both DPSCs and LPS-induced DPSCs and showed anti-inflammatory activity by decreasing TNF-α expression. PA provided strong antibacterial effects against E. coli at 200 µg/ml but affected DPSCs viability negatively. Conclusion: PA and Ni at specific concentrations exhibited immunomodulatory activity on DPSCs and LPS-induced DPSCs without any cytotoxic effects and strong antibacterial effects on S. aureus.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38588575

RESUMO

Objective: Assessment of different remineralizing pretreatment casein phosphopeptide-amorphous calcium phosphate (CPP-ACP), proanthocyanidin (PA), carbon dioxide laser (CO2), eggshell solution (ES) on the shear bond strength (SBS) of resin composite bonded to remineralized carious-affected dentin (CAD). Materials and methods: Eighty human molars were collected with occlusal caries that extended about halfway into the dentin. Using a water-cooled, low-speed cutting saw, a flat, mid-coronal dentin surface was exposed. CAD was differentiated from healthy dentin. Based on the remineralizing agent used on the CAD surface, the teeth were arbitrarily allocated into five groups (n = 10). Group 1: no remineralizing agent, Group 2: CPP-ACP, Group 3: 6.5% PA solution, Group 4: CO2 laser, and Group 5: ES solution. All samples were bonded to composite and light cured and thermocycled. SBS and failure mode analysis were performed using universal testing and stereomicroscope 40 × . Using SPSS, SBS, and failure mode data were analyzed using analysis of variance and Tukey's honesty significant difference (HSD) test Results: Group 3 (6.5% PA solution; 15.59 ± 1.44 MPa) samples established the maximum bond integrity. Nevertheless, Group 1 (No remineralizing agent; 11.19 ± 1.21 MPa) exhibited the minimum outcome of bond strength. Intergroup comparison analysis showed that Group 1 (No remineralizing agent), Group 2 (CPP-ACP), and Group 4 (CO2 laser) established comparable values of bond strength (p > 0.05). Likewise, Group 3 (6.5% PA solution) and Group 5 (EA solution) also revealed equivalent bond integrity (p > 0.05). Conclusions: PA and ES are considered potential remineralizing agents used for caries-affected dentin surfaces in improving bond integrity to composite resin. However, further studies are advocated to extrapolate the findings of this study.

3.
Front Plant Sci ; 15: 1350405, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576792

RESUMO

Naturally colored cotton (NCC) offers an environmentally friendly fiber for textile applications. Processing white cotton fiber into textiles requires extensive energy, water, and chemicals, whereas processing of NCC skips the most polluting activity, scouring-bleaching and dyeing; therefore, NCC provides an avenue to minimize the harmful impacts of textile production. NCC varieties are suitable for organic agriculture since they are naturally insect and disease-resistant, salt and drought-tolerant. Various fiber shades, ranging from light green to tan and brown, are available in the cultivated NCC (Gossypium hirsutum L.) species. The pigments responsible for the color of brown cotton fiber are proanthocyanidins or their derivatives synthesized by the flavonoid pathway. Due to pigments, the NCC has excellent ultraviolet protection properties. Some brown cotton varieties exhibited superior thermal resistance of fiber that can be used to make fabrics with enhanced flame retardancy. Here, we review molecular mechanisms involved in the pigment production of brown cotton and challenges in breeding NCC varieties with a wide range of colors but without penalty in fiber quality. Also, we discuss opportunities for NCC with flame-retarding properties in textile applications.

4.
J Food Sci ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38638069

RESUMO

The conversion of fast-twitch fibers into slow-twitch fibers within skeletal muscle plays a crucial role in improving physical stamina and safeguarding against metabolic disorders in individuals. Grape seed proanthocyanidin extract (GSPE) possesses numerous pharmacological and health advantages, effectively inhibiting the onset of chronic illnesses. However, there is a lack of research on the specific mechanisms by which GSPE influences muscle physiology and gut microbiota. This study aims to investigate the role of gut microbiota and their metabolites in GSPE regulation of skeletal muscle fiber type conversion. In this experiment, 54 male BALB/c mice were randomly divided into three groups: basal diet, basal diet supplemented with GSPE, and basal diet supplemented with GSPE and antibiotics. During the feeding period, glucose tolerance and forced swimming tests were performed. After euthanasia, samples of muscle and feces were collected for analysis. The results showed that GSPE increased the muscle mass and anti-fatigue capacity of the mice, as well as the expression of slow-twitch fibers. However, the beneficial effects of GSPE on skeletal muscle fibers disappeared after adding antibiotics to eliminate intestinal microorganisms, suggesting that GSPE may play a role by regulating intestinal microbial structure. In addition, GSPE increased the relative abundance of Blautia, Muribaculaceae, and Enterorhabdus, as well as butyrate production. Importantly, these gut microbes exhibited a significant positive correlation with the expression of slow-twitch muscle fibers. In conclusion, supplementation with GSPE can increase the levels of slow-twitch fibers by modulating the gut microbiota, consequently prolonging the duration of exercise before exhaustion. PRACTICAL APPLICATION: This research suggests that grape seed proanthocyanidin extract (GSPE) has potential applications in improving physical stamina and preventing metabolic disorders. By influencing the gut microbiota and increasing butyric acid production, GSPE contributes to the conversion of fast-twitch muscle fibers into slow-twitch fibers, thereby enhancing anti-fatigue capacity and exercise endurance. While further studies are needed, incorporating GSPE into dietary supplements or functional foods could support individuals seeking to optimize their exercise performance and overall metabolic health.

5.
Data Brief ; 54: 110238, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38516278

RESUMO

Cranberry-derived proanthocyanidin (PAC) is processed by the gut microbiota to produce 3-(4-hydroxyphenyl)-propionic acid (HPPA), among other metabolites. These data are in support of the article entitled, "Cranberry proanthocyanidin and its microbial metabolite 3,4-dihydroxyphenylacetic acid, but not 3-(4-hydroxyphenyl)-propionic acid, partially reverse pro-inflammatory microRNA responses in human intestinal epithelial cells," published in Molecular Nutrition and Food Research [1]. Here we describe data generated by nCounterⓇ Human v3 miRNA Expression Panel of RNA obtained from Caco-2BBe1 cells exposed to two different concentrations of cranberry extract rich in PAC (50 µg/ml or 100 µg/ml) or 3-(4-hydroxyphenyl)-propionic acid (5 µg/ml or 10 µg/ml) for 24 h, then stimulated with 1 ng/ml of IL-1ß or not (mock) for three hours. The raw data are publicly available at the NCBI GEO database GSE237078. This work also includes descriptive methodological procedures, treatment-responsive microRNA (miRNA) expression profiles in Caco-2BBe1 cells, and in silico mRNA gene target and pathway enrichment analyses of significantly differentially expressed miRNAs (q < 0.001). Cranberry and its components have recognized health benefits, particularly in relation to combatting inflammation and pathogenic bacterial adhesion. These data will be valuable as a reference to study the response of intestinal cells to other polyphenol-rich food sources, analyze gut microbial responses to cranberry and its metabolites in different cell lines and mammalian hosts to elucidate individualized effects, and to delineate the role of the gut microbiota in facilitating the benefits of cranberry. Moreover, these data will aid in expanding our knowledge on the mechanisms underlying the benefits of cranberry and its components.

6.
Pharmacol Res ; 202: 107125, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438091

RESUMO

G protein-coupled receptors (GPCRs) are currently the most widely focused drug targets in the clinic, exerting their biological functions by binding to chemicals and activating a series of intracellular signaling pathways. Formyl-peptide receptor 1 (FPR1) has a typical seven-transmembrane structure of GPCRs and can be stimulated by a large number of endogenous or exogenous ligands with different chemical properties, the first of which was identified as formyl-methionine-leucyl-phenylalanine (fMLF). Through receptor-ligand interactions, FPR1 is involved in inflammatory response, immune cell recruitment, and cellular signaling regulation in key cell types, including neutrophils, neural stem cells (NSCs), and microglia. This review outlines the critical roles of FPR1 in a variety of heart and brain diseases, including myocardial infarction (MI), ischemia/reperfusion (I/R) injury, neurodegenerative diseases, and neurological tumors, with particular emphasis on the milestones of FPR1 agonists and antagonists. Therefore, an in-depth study of FPR1 contributes to the research of innovative biomarkers, therapeutic targets for heart and brain diseases, and clinical applications.


Assuntos
Encefalopatias , Receptores de Formil Peptídeo , Humanos , N-Formilmetionina Leucil-Fenilalanina/metabolismo , Receptores de Formil Peptídeo/metabolismo , Encéfalo/metabolismo
7.
Molecules ; 29(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38398548

RESUMO

The ultrasonic-assisted extraction (UAE) method was employed to separate Cinnamomum camphora proanthocyanidin-rich extracts (PCEs). This extraction process was optimized by the Box-Behnken design, and the optimal conditions, on a laboratory scale, were as follows: an ethanol concentration of 75%, a liquid-to-solid ratio of 24 mL/g, an ultrasonic time of 39 min, and an ultrasonic power of 540 W. Under the obtained conditions, the PCE yield extracted by UAE was higher than that from heat reflux extraction and soaking extraction. An ultra-performance liquid chromatography-tandem mass spectrometry analysis was employed to characterize the phloroglucinolysis products of the C. camphora PCEs, by which epigallocatechin, catechin, epicatechin, and (-)-epigallocatechin-3-O-gallate were identified as the terminal units; epigallocatechin, epicatechin, and (-)-epigallocatechin-3-O-gallate were recognized as extension units. The C. camphora PCEs possessed higher anti-ultraviolet activity in vitro compared with the commercially available sunscreen additive of benzophenone with respect to their ethanol solutions (sun protection factor of 27.01 ± 0.68 versus 1.96 ± 0.07 at a concentration of 0.09 mg/mL) and sunscreens (sun protection factor of 17.36 ± 0.62 versus 14.55 ± 0.47 at a concentration of 20%). These results demonstrate that C. camphora PCEs possess an excellent ultraviolet-protection ability and are promising green sunscreen additives that can replace commercial additives.


Assuntos
Catequina , Cinnamomum camphora , Proantocianidinas , Ultrassom , Protetores Solares , Etanol/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
8.
Small ; : e2310689, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421135

RESUMO

Improving the interconnected structure and bioregulatory function of natural chitosan is beneficial for optimizing its performance in bone regeneration. Here, a facile immunoregulatory constructional design is proposed for developing instructive chitosan by directional freezing and alkaline salting out. The molecular dynamics simulation confirmed the assembly kinetics and structural features of various polyphenols and chitosan molecules. Along with the in vitro anti-inflammatory, antioxidative, promoting bone mesenchymal stem cell (BMSC) adhesion and proliferation performance, proanthocyanidin optimizing chitosan (ChiO) scaffold presented an optimal immunoregulatory structure with the directional microchannel. Transcriptome analysis in vitro further revealed the cytoskeleton- and immune-regulation effect of ChiO are the key mechanism of action on BMSC. The rabbit cranial defect model (Φ = 10 mm) after 12 weeks of implantation confirmed the significantly enhanced bone reconstitution. This facile immunoregulatory directional microchannel design provides effective guidance for developing inducible chitosan scaffolds.

9.
J Agric Food Chem ; 72(8): 4433-4447, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38354220

RESUMO

Astringency influences the sensory characteristics and flavor quality of table grapes. We tested the astringency sensory attributes of berries and investigated the concentration of flavan-3-ols/proanthocyanidins (PAs) in skins after the application of the plant growth regulators CPPU and GA3 to the flowers and young berries of the "Summer Black" grape. Our results showed that CPPU and GA3 applications increase sensory astringency perception scores and flavan-3-ol/proanthocyanidin concentrations. Using integrated transcriptomic and proteomic analysis, differentially expressed transcripts and proteins associated with growth regulator treatment were identified, including those for flavonoid biosynthesis that contribute to the changes in sensory astringency levels. Transient overexpression of candidate astringency-related regulatory genes in grape leaves revealed that VvWRKY71, in combination with VvMYBPA1 and VvMYC1, could promote the biosynthesis of proanthocyanidins, while overexpression of VvNAC83 reduced the accumulation of proanthocyanidins. However, in transient promoter studies in Nicotiana benthamiana, VvWRKY71 repressed the promoter of VvMYBPA2, while VvNAC83 had no significant effect on the promoter activity of four PA-related genes, and VvMYBPA1 was shown to activate its own promoter. This study provides new insights into the molecular mechanisms of sensory astringency formation induced by plant growth regulators in grape berries.


Assuntos
Polietilenoglicóis , Poliuretanos , Proantocianidinas , Vitis , Proantocianidinas/metabolismo , Vitis/metabolismo , Frutas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Adstringentes/metabolismo , Proteômica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Genes Reguladores , Regulação da Expressão Gênica de Plantas
10.
Food Chem ; 444: 138642, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38325088

RESUMO

Chinese quince (Chaenomeles sinensis) fruit is an underutilized resource, rich in proanthocyanidins with antioxidant ability but poor lipid solubility. In this study, a novel modified oligomeric proanthocyanidin (MOPA) was prepared, which exhibited favorable lipid solubility (354.52 mg/100 g). It showed higher radical scavenging abilities than commercial antioxidant-BHA (butylated hydroxyanisole), both at 0.4-0.5 mg/mL. The addition of MOPA (0.04 %wt.) significantly increased the oxidative stability index of the soybean oil from 5.52 to 8.03 h, which was slightly lower than that of BHA (8.35 h). Analysis of the physicochemical properties and composition of oil during deep-frying showed that MOPA demonstrated significant antioxidant effects and effectively restricted the oil oxidation. This inhibition also delays the formation of heterocyclic amines (HAs) in fried food, thereby reducing the migration of HAs from food to deep-frying oil. Therefore, MOPA is a promising novel liposoluble antioxidant for protecting the quality of deep-frying oil.


Assuntos
Fenilacetatos , Proantocianidinas , Rosaceae , Antioxidantes/química , Óleo de Soja/química , China
11.
Environ Toxicol ; 39(5): 2572-2582, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38205677

RESUMO

Ulcerative colitis (UC) is a complex inflammatory disease of colorectum that induces abnormal immune responses and severely affects the quality of life of the patients. Grape seed proanthocyanidin extract (GSPE) exerts anti-inflammatory and antioxidant functions in many inflammatory diseases. The objective of this study was to investigate the potential therapeutic effects and underlying mechanisms of GSPE in UC using a dextran sodium sulfate (DSS)-induced mouse UC model and a lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage model. In this study, we found that the GSPE markedly prevented DSS-induced weight loss and colon length shortening in UC mice. Further investigations showed that GSPE significantly attenuated the expression of pro-inflammatory cytokines TNF-α, IL-6, and IL-1ß, and elevated the expression of anti-inflammatory cytokine IL-10 in the colon tissues and serum of DSS-induced colitis mice by suppressing NF-κB signaling pathway. Furthermore, LPS-induced inflammation in RAW264.7 cells was also reversed by GSPE. Taken together, our results confirm that GSPE can ameliorate inflammatory response in experimental colitis via inhibiting NF-κB signaling pathway. This study advances the research progress on a potentially effective therapeutic strategy for inflammatory bowel diseases.


Assuntos
Colite Ulcerativa , Colite , Extrato de Sementes de Uva , Proantocianidinas , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Lipopolissacarídeos/toxicidade , Qualidade de Vida , Transdução de Sinais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Inflamação/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/toxicidade , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
12.
Food Res Int ; 177: 113867, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225134

RESUMO

The analysis of proanthocyanidins (PA) in red wine has typically been conducted using few key methods, such as phloroglucinolysis or precipitation assays. Here, the content of PAs and other common polyphenol groups in commercial red wines were analyzed with a group-specific liquid chromatography-tandem mass spectrometry method. Besides concentrations, the method provides qualitative information about the detected compound groups in the form of two-dimensional (2D) chromatographic fingerprints. The 2D fingerprints of PAs have not been utilized in analysis of red wine before. For instance, 2D chromatographic fingerprints revealed that the complex PA compositions were qualitatively notably similar between many wine types, even when there were considerable differences in concentrations. Finally, 201 commercial red wines had been categorized as either tannic or medium tannic based on their sensorial evaluations. The content of PAs and three different groups of oligomeric adducts of malvidin glycosides and PAs were measured from these wines. The compositional features of the PAs and PA-malvidin glycoside adducts were more important than concentrations in explaining the perceived tannicity.


Assuntos
Proantocianidinas , Vinho , Polifenóis/análise , Proantocianidinas/análise , Vinho/análise , Cromatografia Líquida , Glicosídeos/análise
13.
Meat Sci ; 210: 109436, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38266434

RESUMO

Plant extracts are commonly used as feed additives to improve pork quality. However, due to their high cost, shortening the duration of supplement use can help reduce production costs. In this study, we aimed to investigate the effects of grape seed proanthocyanidin extract (GSPE) on meat quality and muscle fiber characteristics of finishing pigs during the late stage of fattening, which was 30 days in our experimental design. The results indicated that short-term dietary supplementation of GSPE significantly reduced backfat thickness, but increased loin eye area and improved meat color and tenderness. Moreover, GSPE increased slow myosin heavy chain (MyHC) expression and malate dehydrogenase (MDH) activity, while decreasing fast MyHC expression and lactate dehydrogenase (LDH) activity in the Longissimus thoracis (LT) muscle. Additionally, GSPE increased the expression of Sirt1 and PGC-1α proteins in the LT muscle of finishing pigs and upregulated AMP-activated protein kinase α 1 (AMPKα1), AMPKα2, nuclear respiratory factor 1 (NRF1), and calcium/calmodulin-dependent protein kinase kinase ß (CaMKKß) mRNA expression levels. These findings suggest that even during the late stage of fattening, GSPE treatment can regulate skeletal muscle fiber type transformation through the AMPK signaling pathway, thereby affecting the muscle quality of finishing pigs. Therefore, by incorporating GSPE into the diet of pigs during the late stage of fattening, producers can enhance pork quality while reducing production costs.


Assuntos
Extrato de Sementes de Uva , Carne de Porco , Proantocianidinas , Carne Vermelha , Suínos , Animais , Fibras Musculares Esqueléticas/metabolismo , Extrato de Sementes de Uva/farmacologia , Suplementos Nutricionais , Músculo Esquelético/metabolismo
14.
Adv Healthc Mater ; 13(6): e2302690, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37885334

RESUMO

Effectively integrating infection control and osteogenesis to promote infected bone repair is challenging. Herein, injective programmable proanthocyanidin (PC)-coordinated zinc-based composite hydrogels (ipPZCHs) are developed by compositing antimicrobial and antioxidant PC-coordinated zinc oxide (ZnO) microspheres with thioether-grafted sodium alginate (TSA), followed by calcium chloride (CaCl2 ) crosslinking. Responsive to the high endogenous reactive oxygen species (ROS) microenvironment in infected bone defects, the hydrophilicity of TSA can be significantly improved, to trigger the disintegration of ipPZCHs and the fast release of PC-coordinated ZnOs. This together with the easily dissociable PC-Zn2+ coordination induced fast release of antimicrobial zinc (Zn2+ ) with/without silver (Ag+ ) ions from PC-coordinated ZnOs (for Zn2+ , > 100 times that of pure ZnO) guarantees the strong antimicrobial activity of ipPZCHs. The exogenous ROS generated by ZnO and silver nanoparticles during the antimicrobial process further speeds up the disintegration of ipPZCHs, augmenting the antimicrobial efficacy. At the same time, ROS-responsive degradation/disintegration of ipPZCHs vacates space for bone ingrowth. The concurrently released strong antioxidant PC scavenges excess ROS thus enhances the immunomodulatory (in promoting the anti-inflammatory phenotype (M2) polarization of macrophages) and osteoinductive properties of Zn2+ , thus the infected bone repair is effectively promoted via the aforementioned programmable and self-adaptive processes.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Proantocianidinas , Óxido de Zinco , Zinco/farmacologia , Óxido de Zinco/farmacologia , Hidrogéis/farmacologia , Antioxidantes , Proantocianidinas/farmacologia , Espécies Reativas de Oxigênio , Prata/farmacologia
15.
Plant J ; 117(1): 53-71, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37738381

RESUMO

Seed color is one of the key target traits of domestication and artificial selection in chickpeas due to its implications on consumer preference and market value. The complex seed color trait has been well dissected in several crop species; however, the genetic mechanism underlying seed color variation in chickpea remains poorly understood. Here, we employed an integrated genomics strategy involving QTL mapping, high-density mapping, map-based cloning, association analysis, and molecular haplotyping in an inter-specific RIL mapping population, association panel, wild accessions, and introgression lines (ILs) of Cicer gene pool. This delineated a MATE gene, CaMATE23, encoding a Transparent Testa (TT) and its natural allele (8-bp insertion) and haplotype underlying a major QTL governing seed color on chickpea chromosome 4. Signatures of selective sweep and a strong purifying selection reflected that CaMATE23, especially its 8-bp insertion natural allelic variant, underwent selection during chickpea domestication. Functional investigations revealed that the 8-bp insertion containing the third cis-regulatory RY-motif element in the CaMATE23 promoter is critical for enhanced binding of CaFUSCA3 transcription factor, a key regulator of seed development and flavonoid biosynthesis, thereby affecting CaMATE23 expression and proanthocyanidin (PA) accumulation in the seed coat to impart varied seed color in chickpea. Consequently, overexpression of CaMATE23 in Arabidopsis tt12 mutant partially restored the seed color phenotype to brown pigmentation, ascertaining its functional role in PA accumulation in the seed coat. These findings shed new light on the seed color regulation and evolutionary history, and highlight the transcriptional regulation of CaMATE23 by CaFUSCA3 in modulating seed color in chickpea. The functionally relevant InDel variation, natural allele, and haplotype from CaMATE23 are vital for translational genomic research, including marker-assisted breeding, for developing chickpea cultivars with desirable seed color that appeal to consumers and meet global market demand.


Assuntos
Cicer , Cicer/metabolismo , Locos de Características Quantitativas/genética , Alelos , Domesticação , Polimorfismo de Nucleotídeo Único , Melhoramento Vegetal , Sementes/genética
16.
J Agric Food Chem ; 71(49): 19832-19844, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38048420

RESUMO

Ten dimeric procyanidin (PC) analogs were hemisynthesized from catechin or epicatechin and from five different aldehydes using the same mechanism that produces the important acetaldehyde-mediated adducts of proanthocyanidins (PAs) and anthocyanins in red wine. Protein precipitation capacity (PPC), octanol-water partition coefficient (log P) and stability of the PC analogs were determined. The emphasis was on the PPC because it has been shown to correlate with anthelmintic activity against gastrointestinal nematodes in ruminants and with other beneficial bioactivities in animals, as well. The PPC of PC analogs was greatly improved compared to natural PC dimers, but the capacity was not as great as that of a PC trimer or epigallocatechin gallate. The log P of PC analogs varied from hydrophobic to hydrophilic depending on the intramolecular linkage. Great variation was observed in stabilities of PC analogs in phosphate buffered saline, and the mixtures of degradation products were characterized using high-resolution mass spectrometry.


Assuntos
Catequina , Proantocianidinas , Vinho , Animais , Proantocianidinas/química , Catequina/química , Antocianinas/análise , Bebidas Alcoólicas/análise , Vinho/análise , Fosfatos/análise
17.
Plant Cell ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114096

RESUMO

MicroRNAs (miRNAs) are a class of non-protein-coding short transcripts that provide a layer of post-transcriptional regulation essential to many plant biological processes. MiR858, which targets the transcripts of MYB transcription factors, can affect a range of secondary metabolic processes. Although miR858 and its 187-nt precursor have been well studied in Arabidopsis (Arabidopsis thaliana), a systematic investigation of miR858 precursors and their functions across plant species is lacking due to a problem in identifying the transcripts that generate this sub-class. By re-evaluating the transcript of miR858 and relaxing the length cut-off for identifying hairpins, we found in kiwifruit (Actinidia chinensis) that miR858 has long-loop hairpins (1,100-2,100-nt), whose intervening sequences between miRNA generating complementary sites were longer than all previously reported miRNA hairpins. Importantly, these precursors of miR858 containing long-loop hairpins (termed MIR858L) are widespread in seed plants including Arabidopsis, varying between 350- and 5,500-nt. Moreover, we showed that MIR858L has a greater impact on proanthocyanidin and flavonol levels in both Arabidopsis and kiwifruit. We suggest that an active MIR858L-MYB regulatory module appeared in the transition of early land plants to large upright flowering plants, making a key contribution to plant secondary metabolism.

18.
Stud Health Technol Inform ; 308: 130-136, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38007734

RESUMO

OBJECTIVES: To study the effects of grape seed proanthocyanidins (GSP) combined with allicin on serum lipids level and vascular damage in a rat model of hyperlipidemia. MATERIALS AND METHODS: SD rats(male, 170-220 gn= 40) were randomized into five groups (n = 8/group): modelhigh fat and cholesterol diet; controlnormal diet; model+low-dose (GSP+allicin )(GSP 45mg/kg, allicin 30mg/kg, orally); model+high-dose (GSP+allicin) (GSP180mg/kg, allicin 90mg/kg, orally) and positive control (model+simvastatin (4 mg/kg)). Normal control group was fed conventionally, and remaining four groups were fed high cholesterol and fat food to replicate the high fat model. After 9 weeks, the normal control group continued to receive regular feeding, while the other groups continued to receive high-fat feeding. At the same time, model and normal control groups were given equal volume of physiological saline by gavage, and the other treatment groups began to receive corresponding drugs by gavage once a day. After 4 weeks, serum levels of total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C) as well as high-density lipoprotein cholesterol (HDL-C) in rats were determined. And the body weight of rat, total antioxidant capacity (T-AOC), superoxide dismutase (SOD) and malondialdehyde (MDA)in serum were identified. The level of endothelin-1(ET-1) was quantitative analysis by ELISA assay. RESULTS: In comparison to normal controls, the model group displayed a marked rise in body weight, an increment in serum concentrations of LDL-C, TG and TC, as well as a decline in HDL (P<0.01), demonstrating successful model replication; All doses of GSP in combination with allicin resulted in a reduction in TG, LDL-C, and TC and an enhancement in HDL-C in contrast to the model control (all P<0.05). High-dose (GSP+allicin ) decreased MDA, and increased T-AOC and SOD activity(all P<0.01). All doses of GSP combined with allicin decreased ET-1 (all P<0.05). In addition, the protective effect of GSP combined with allicin was dose-dependent. CONCLUSIONS: Studies have shown that GSP combined with allicin can significantly improve blood lipids in hyperlipidemic rats, and this mechanism may be related to antioxidants and reduced endothelial damage.


Assuntos
Hiperlipidemias , Proantocianidinas , Vitis , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Proantocianidinas/farmacologia , Proantocianidinas/uso terapêutico , LDL-Colesterol/uso terapêutico , Lipídeos , Hiperlipidemias/tratamento farmacológico , Triglicerídeos/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Colesterol/uso terapêutico , Superóxido Dismutase/uso terapêutico , HDL-Colesterol/uso terapêutico , Peso Corporal , Sementes
19.
Toxicol Res ; 39(4): 749-759, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37779581

RESUMO

In this study, we investigated the effects of grape seed proanthocyanidin extract (GSPE) against the side effects of high-dose administration of methylprednisolone (MP) in male rats. A total of 32 adult Wistar male albino rats were divided into four groups: (1) control (CON), received standard food only; (2) MP, received standard food + intraperitoneal injection of 60 mg/kg MP on day 7; (3) GSPE, received standard food + 200 mg/kg/day GSPE; and (4) MP + GSPE, received standard food + 200 mg/kg/day of GSPE + intraperitoneal injection of 60 mg/kg MP on day 7. All animals in the GSPE and GSPE + MP groups were treated once a day by oral gavage for 14 consecutive days. The feed intake of rats in the MP and MP + GSPE groups decreased significantly by 24.14% and 13.52%, respectively (p < 0.05). Administration of MP resulted in significant increases in serum concentrations of blood urea nitrogen (p < 0.001), glucose (p < 0.01), alkaline phosphatase, and adrenocorticotropic hormone (p < 0.05). High-dose MP administration significantly reduced catalase (p < 0.001) and glutathione peroxidase (p < 0.05) concentrations in the liver and kidney tissues of rats, while glutathione concentrations were only reduced in liver tissue (p < 0.05). The expression levels of Bcl-2 and TNF-α in liver, kidney, and testicular tissue were significantly increased, while the expression levels of caspase-3 were reduced (p < 0.001). Furthermore, sperm concentration was significantly affected by GSPE in rats induced by high-dose MP, and sperm loss was significantly reduced in MP + GSPE (p < 0.05). These findings suggest that GSPE could be useful as a supplement to alleviate MP-induced toxicity in rats.

20.
Nutrients ; 15(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686825

RESUMO

The activation of the NLRP3 inflammasome pathway during infectious pathogen-induced immunopathology can lead to chronic inflammation and various adverse health outcomes. Identification of functional foods with anti-inflammatory properties is crucial for preventing inflammation triggered by NLRP3 inflammasome activation. This study aimed to investigate the anti-inflammatory properties of a proanthocyanidin-rich fraction obtained from red rice germ and bran against lipopolysaccharide (LPS) and adenosine triphosphate (ATP)-induced condition in A549 lung cells. The proanthocyanidin-rich fraction from Yamuechaebia 3 red rice extract (YM3-PRF) was obtained using column chromatography with Sephadex LH20, and its total proanthocyanidin content was determined to be 351.43 ± 1.18 mg/g extract using the vanillin assay. A549 lung cells were pretreated with YM3-PRF at concentrations of 5-20 µg/mL prior to exposure to LPS (1 µg/mL) and ATP (5 nM). The results showed that YM3-PRF significantly inhibited the expression of inflammatory mRNAs (NLRP3, IL-6, IL-1ß, and IL-18) and the secretion of cytokines (IL-6, IL-1ß, and IL-18) in a dose-dependent manner (p < 0.05). Mechanistically, YM3-PRF exerted its anti-inflammatory effects by inhibiting NF-κB translocation and downregulating proteins associated with the NLRP3 inflammasome pathway (NLRP3, ASC, pro-caspase-1, and cleaved-caspase-1). These findings suggest that the proanthocyanidin-rich fraction from red rice germ and bran has protective effects and may serve as a potential therapeutic option for chronic inflammatory diseases associated with NLRP3 inflammasome activation.


Assuntos
Oryza , Pneumonia , Proantocianidinas , NF-kappa B , Inflamassomos , Interleucina-18 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Interleucina-6 , Lipopolissacarídeos , Proantocianidinas/farmacologia , Inflamação , Alimento Funcional , Trifosfato de Adenosina , Pulmão , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...